Gửi bởi
Freedom
Mình không hiểu lắm về lần thử thứ 3 với nhóm (1,2,3) của bạn. Giả sử kết quả là đỏ => trong nhóm này chứa ít nhất 1 viên NPX, và nhóm còn lại có 9 viên (4,5,6,7,8,9,10,11,12). Cũng giả sử nếu biết luôn nhóm (1,2,3) chỉ chứa 1 viên NPX thôi thì theo mình để xác định được viên NPX này cũng cần 2 lần thử (>1), và nhóm (4,5,6,7,8,9,10,11,12) cũng cần 4 lần thử (vì 2^3 < 9). Trong khi đó chỉ còn có 5 lần thử, không biết bạn dùng mẹo nào để xác định được 2 viên NPX ?.
Chào bạn! Chẳng có mẹo gì cả bạn ạ. Mình cứ tuần tự thử thôi. Mời bạn tham khảo:
T1( 1->8 )-kqx, T2( 13->20 )-kq0, còn( 9, 10, 11, 12 ) chưa thử.
T3( 1, 2, 3 )-kq0
A. T4( 4, 5 )-kq0->trong nhóm( 6, 7, 8 ) có một hoặc hai viên NPX, trong nhóm( 9, 10, 11, 12 ) có thể có một viên NPX.
a. T5( 6, 12 )-kq0->còn ba lần thử cho ( 7, 8 ) và ( 9, 10, 11 )- dễ.
b. T5( 6, 12 )-kqx. T6( 7, 8 )-kqx->còn hai lần thử cho hai nhóm( 6, 12 ) và ( 7, 8 )-dễ, vì trong mỗi nhóm có một viên NPX . T6( 7, 8 )-kq0->viên bi số 6 NPX và còn hai lần thử cho( 9, 10, 11, 12 )-tìm được.
B. T4( 4, 5 )-kqx->trong nhóm( 4, 5 ) có thể có một hoặc hai viên NPX, trong các nhóm( 6, 7, 8 ) và( 9, 10, 11, 12 ) có thể có một viên.
a. T5( 9, 10, 11, 12 )-kqx->còn ba lần thử cho hai nhóm( 4, 5 ) và ( 9, 10, 11, 12 )-dễ, vì trong mỗi nhóm có một viên NPX.
b. T5( 9, 10, 11, 12 )-kq0->còn ba lần thử cho hai nhóm( 4, 5 ) và ( 6, 7, 8 )-dễ.
T3( 1, 2, 3 )-kqx
A. T4( 9, 10, 11, 12 )-kqx->còn bốn lần thử cho hai nhóm( 1, 2, 3 ) và ( 9, 10, 11, 12 )-dễ.
B. T4( 9, 10, 11, 12 )-kq0
a. T5( 1, 8 )-kq0->còn ba lần thử cho hai nhóm( 2, 3 ) và ( 6, 7, 8 )-dễ.
b. T5( 1, 8 )-kqx. T6( 2, 3)-kqx->còn hai lần thử cho hai nhóm( 1, 8) và ( 2, 3)-dễ. T6( 2, 3 )-kq0-> còn hai lần thử cho nhóm( 5, 6, 7, 8 )-dễ.