Kết quả 1 đến 10 của 376
Chủ đề: Nhờ mọi người giải hộ bài toán.
Threaded View
-
28-09-2013, 09:55 PM #11
Bạn gợi ý vậy mình đã có thể giải được rồi, tiện thể trình bày luôn, bạn kiểm tra giúp nhé.
Chia 20 viên thành 3 nhóm : 7 viên, 8 viên, 5 viên.
-Lần 1: Test nhóm 7 viên. Nếu kết quả đỏ thì còn 7 lần thử cho 13 viên có 2NPX => xác định được. Nếu kết quả xanh thì :
-Lần 2: Test nhóm 8 viên. Nếu kết quả xanh thì có 2 nhóm, nhóm 7 viên và nhóm 8 viên, mỗi nhóm chứa 1 viên NPX, với 6 lần thử => xác định được. Nếu kết quả đỏ, thì suy ra còn 12 viên chia 2 nhóm : Nhóm 7 viên k/h (1,2,3,4,5,6,7) chứa ít nhất 1 viên NPX; Nhóm 5 viên k/h (8,9,10,11,12) chưa biết nhưng nếu có thì chỉ có 1 viên NPX thôi (không đồng thời). Xét tiếp trường hợp này, sử dụng k/h như của bạn tuhiep :
-Lần 3 : Test B3(1,8,9,10).
+ Nếu B3kqx => (1,8,9,10) chứa ít nhất 1 viên NPX. Sử dụng 2 lần thử 4,5 để xác định viên NPX(lần 4 thử nhóm (9,10)). Nếu viên NPX là 1 trong 3 viên 8,9,10 thì viên NPX còn lại thuộc (1,2,3,4,5,6,7), với 3 lần thử -> dễ. Nếu viên NPX là viên 1 thì viên NPX còn lại thuộc (2,3,4,5,6,7,11,12), với 3 lần thử -> vừa đủ để xác định.
+ Nếu B3kq0 => (2,3,4,5,6,7,11,12) chứa 2 viên NPX, với 5 lần thử. Xét tiếp lần thử 4.
-Lần 4, Test B4(2,3).
+ Nếu B4kqx => lần thử 5 xác định viên 2 hay viên 3 NPX, còn 3 lần thử với 7 viên chứa 1 viên NPX => dễ.
+ Nếu B4kq0 => Xét tiếp lần 5.
-Lần 5, Test B5(11,12).
+ Nếu B5kqx => Lần thử 6 xác định viên 11 hay viên 12 NPX, vì 2 viên này không thể NPX đồng thời nên viên kia cũng chắc chắn là không NPX. Còn 2 lần thử cuối với 4 viên (4,5,6,7) chứa 1 viên NPX -> dễ.
+ Nếu B5kq0 => Còn 4 viên (4,5,6,7) với 3 lần thử => dễ.
------------------------------------------------------------
Hóa ra mấu chốt của bài toán lại nằm ở sự phân bố nhóm ở lần thử đầu. Do xu hướng thường nghĩ đến tính đối xứng nên trong đầu mình cứ mặc định chia nó là 8,8,4 dẫn đến bế tắc. Đúng là lối mòn trong tư duy thật nguy hiểm.
Cảm ơn bạn nhiều!
Nhờ mọi người giải hộ bài toán.
Đánh dấu